PSK-31 101

Everything you need to know to understand and use PSK-31

by

George Rothbart, KF6VSG

Presentation to

PACIFICON™ 2001

The 10th Annual ARRL Pacific Division Meeting and Convention

October 19, 20, and 21st, 2001, at the Sheraton Concord (Airport) Hotel,
Concord, California.

October 20th, 2001
Traditional modes of communication

✓ Analog modes (voice)
✓ Digital Modes (character-based data)
Digital Modes (char-based data):

- CW
- RTTY
- Packet
- APRS
- SSTV
- PSK-31
RTTY: an example of frequency shift keying

Data pattern 0101 to be transmitted

0 bit

1 bit

“Space” signaled by frequency f1

“Mark”, signaled by frequency f2

Combined signal to be placed on an RF carrier
PSK: Phase shift keying

Let a ‘1’ (mark) be in phase with a reference frequency, and a ‘0’ (space) be 180 degrees out of phase with the reference frequency. Then 1010 would look like this:

The problem are those nasty sudden reversals in phase—they are going to produce wide bandwidth splatter!

A solution is to only change the phase when the signal goes through a zero…
PSK—
Keeping the bandwidth narrow

If we gradually take the signal amplitude down to zero when we want to reverse the phase, there will be no sudden signal changes, and nothing splatters outside of the desired bandwidth:

Of course, there is no need to change the amplitude when we don’t need to change phase. Thus, we might see a signal amplitude like this:
PSK31 signaling

The signal is sampled at intervals of 31.25 Hz (every 32 msec). Why this rate? Because

a) It can be easily derived from the 8KHz signal generated by your sound card (8000 Hz divided by 256), and

b) 30 or so bits per second translates to about 50 wpm, the fastest you can type.

A zero (space) is defined as a 180 degree phase reversal from the prior sample,

A one (mark) is defined as no phase change from the prior sample.
PSK31 signaling

Therefore, this signal is detected as 00100, which we will soon see is the representation of the character “SPACE”.
PSK31 signaling

Let’s look at PSK31 in the real world on an oscilloscope:

Notice that when we shift the signal one bit width (32 msec), and compare, the phase shift of 180 degrees is clear. This also gives us a clue for how PSK-31 is detected and converted back to the digital world.
PSK—its spectrum

- An idle PSK signal (stream of zero bits) looks almost like a 31 Hz sine wave modulated onto an audio “carrier.” Q: How else could this or a similar signal be generated?

- A: By mixing two tones centered on the “carrier” audio frequency, separated by ±15.5 Hz.

Therefore, a spectrum analyzer would show a two-peak signal.

Therefore the bandwidth of PSK-31 is...ta-dah...31 Hz.

As characters of data get transmitted, the “valley” gets filled in, so the bandwidth remains 31 Hz.
PSK brightness

- What’s so good about a bandwidth of 31 Hz?
- For SSB voice, imagine putting 100 watts into a voice bandwidth of 3000 Hz. That’s 30 mwatts/Hz.
- Putting the same power into PSK-31, however, is packing 100 watts into just 31 Hz. That’s 3200 mwatts/Hz. More than 100 brighter (20 dB) than SSB!
- Another way to put it: you need much less power to have the same S/N as voice. Cross-country contacts with 1 watt of power are not uncommon! PSK-31 is ideal for QRP.
Example: if S/N is 3db, then the bit error rate for PSK is 0.02 (1 error in 50 bits), but for FSK the bit error rate is almost 1 error in 10 bits!

In fact, the curve for PSK is just the curve for FSK, but shifted to the left exactly 3db.

It means that PSK performs like an FSK signal with 3dB of gain. Or, another way to say it is when FSK is too weak to copy, PSK will still be copiable!
You are probably used to the ASCII standard, which encodes every character as 8 bits, with a start and stop bit.

But PSK-31 does not use ASCII!

Instead, PSK-31 uses a form of encoding whereby the most common characters are represented by the fewest bits. Does this remind you of any other form of digital communication?
How PSK31 vericode works:

- This variable length code is called “vericode” and works using these two rules:
 1. All characters are separated from each other by two consecutive 0 bits.
 2. No character contains more than one consecutive 0 bit.
- Next, a list of all bit patterns that obey these rules was generated, and the shortest patterns were assigned to the most commonly occurring characters.
What vericode looks like

- Here are some characters in vericode:
 - SPACE: 1
 - e: 11
 - o: 111
 - t: 101
- The average number of bits per character in vericode is about 6.5, compared to 10 for ASCII. This improves the data rate by about 50% for the same bandwidth!
- Also: PSK-31 allows both upper and lower case letters, numbers, and all punctuation (including backspace)!
<table>
<thead>
<tr>
<th>S/N</th>
<th>Bit Error Rate</th>
<th>Character Copy Rate</th>
<th>Sample Text</th>
</tr>
</thead>
</table>
| 0dB | 0.1 | 50% | W1BW DE KF6XSG. Ok, Jjm.!Rh`nks"hoq!thf!calj.
L`megfrf!iq George-"QTHis S`n Rafbfl CA, aanut
20 miler-nnruh of Sao"Franciscn. How cmpy?
@TW!WOAX DE KF6VSF!K |
| 3dB | 0.02 | 88% | W1AW DE KF6VSG. Pk, Jin. Thaoks for the call.
Name jere is George. QTH is Sao Rafbel CA, aaoest
20 mileu-north of Tcn Francitco. How copx?
BTU"WOAW!DE KF6VSG K |
| 6dB | 0.003 | 98% | W1AW DE KF6VSG. Ok, Jim. Thanks for the call.
Name here is George. QTH is San Rafael CA, about
20 miles north of San Francisco. Hob copy? BTU
W1AW DE KF6VSG K |
| 10dB| 0.000005 | 99.997% | W1AW DE KF6VSG. Ok, Jim. Thanks for the call.
Name here is George. QTH is San Rafael CA, about
20 miles north of San Francisco. How copy? BTU
W1AW DE KF6VSG K |
Ready to build a PSK-31 station?

- Here is all you need:
 - A computer running Windows 95/98/2000 (or even DOS or Linux)
 - Sound card (SoundBlaster compatible)
 - Stable HF transceiver (1 Hz), Antenna, power supply
 - Rig to computer cables
 - PSK-31 software for your OS
 - PTT hardware (to be described)
 - Free COM port
 - Operating privileges (i.e., your ticket)
How to build it

Computer

Sound Card

COM Port

PSK-31 Application

DTR or RTS of COMn*

Mic Input*

Speaker Out

HF Transceiver

Antenna

Speaker Out

a=Line In
b=Line Out

*=not needed to monitor
PPT control & Mic Input

- Both of these signals need conditioning:
- We use a COM port’s DTR or RTS lines as a control signal to key the transmitter (i.e., close PTT to ground)
- We use the sound card’s “Speaker Out” to provide signal to the transceiver’s Mic Input

The details…
We use a COM port’s DTR or RTS lines as a control signal to key the transmitter (i.e., close PTT to ground).

DTR/RTS are RS-232 levels (+- 12VDC), but PTT needs to be grounded to transmit.

Solution(s):
- Use a transistor as a switch
- Use an optical isolator as a switch
- Use a relay as a switch

And we also have to think about the analog signal…
Conditioning the analog signal

- We use the sound card’s “Speaker Out” to provide signal to the transceiver’s Mic Input.
- But “Speaker Out” is a low impedance signal, while the transceiver’s Mic input is a high impedance signal.
- Solution(s):
 - Audio transformer
 - Resistive divider

Therefore...
Conditioning Circuit Example

Simplest homebrew circuit you can make

Another solution is..

DB9, Female To COM port

DTR, Pin 4

Ground, Pin 5

Reed Relay, Radio Shack 275-232

PTT, Pin 3

Ground, Pin 6

Xmit Audio, Pin 1

DB9 Female To Mic cable

Ground, Pin 6

3mm Audio Jack To Sound Card Speaker Out

100K

1K
Commercial Interfaces

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer</th>
<th>MSRP</th>
<th>Web site URL</th>
<th>Front view</th>
</tr>
</thead>
<tbody>
<tr>
<td>RigBlaster</td>
<td>West Mountain Radio</td>
<td>$90</td>
<td>www.westmountainradio.com</td>
<td></td>
</tr>
<tr>
<td>Nomic</td>
<td>West Mountain Radio</td>
<td>$35</td>
<td>www.westmountainradio.com</td>
<td></td>
</tr>
<tr>
<td>Signalink</td>
<td>Tigertronics</td>
<td>$50</td>
<td>www.tigertronics.com</td>
<td></td>
</tr>
<tr>
<td>MFJ-1275 Soundcard Radio Interface</td>
<td>MFJ Enterprises</td>
<td>$89</td>
<td>www.mfjenterprises.com</td>
<td></td>
</tr>
</tbody>
</table>
What’s inside the Nomic
Now for the software...

- You have a large number of freeware and inexpensive shareware programs to choose from. Here are just a few:

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WinPSKse</td>
<td>DOS, freeware</td>
</tr>
<tr>
<td>Intercom</td>
<td>RTTY and PSK31 Terminal for Windows95 (for Sound Blaster). Shareware.</td>
</tr>
<tr>
<td>MixW</td>
<td>The original (updated) program by Peter Martinez, G3PLX. Similar to a portion of Logger (and others), simple to use, currently lacks the spectrum display.</td>
</tr>
<tr>
<td>PSK31SBW</td>
<td>This software has really taken hold in the PSK31 crowd, mostly due to its ease of use.</td>
</tr>
<tr>
<td>WinPSK</td>
<td>Displays up to 20 PSK signals at the same time.</td>
</tr>
<tr>
<td>ZAKANAKA</td>
<td></td>
</tr>
<tr>
<td>DigiPan</td>
<td></td>
</tr>
<tr>
<td>WinSQLPSK</td>
<td></td>
</tr>
</tbody>
</table>
Digipan

- By far the most popular PSK31 application
- Important features:
 - Waterfall display (time vs. frequency)
 - Macros

Waterfall display

Macro Buttons

Received text here

You type here

Waterfall display

Selected PSK signal

Phase Scope
Not as well known, but my personal favorite.

Features:

Spectrum Analyzer

Displays up to 20 PSK signals simultaneously.

Logging

Received text here (and there and there…)

Waterfall display

You type here

Spectrum analyzer

Macro Buttons

Logs your QSOs

Not as well known, but my personal favorite.

Features:

Spectrum Analyzer

Displays up to 20 PSK signals simultaneously.

Logging

Received text here (and there and there…)

Waterfall display

You type here

Spectrum analyzer

Macro Buttons

Logs your QSOs
Tuning up in PSK-31

- Improperly tuned PSK-31 can result in
 - Undermodulation—your signal will be too weak to be received or copied
 - Overmodulation—your signal will have high Intermodulation Distortion (IMD) and splatter, and possibly will have poor copy also.
Tuning up in PSK-31

- Tuning up involves setting
 - Transceiver RF frequency
 - Sound card line out audio level
 - Transceiver microphone gain
 - Transceiver power setting
 - Turning off the speech processor
 - Turning off AGC
Setting the RF frequency

- PSK-31 can be found on the bands shown in the table at the left.
- If you park your transceiver one of these frequencies, you will find PSK signals ranging in audio from 400 Hz to 3500 Hz. Yes, you can pack 100 simultaneous QSO’s into “one” RF location!
- You can now pick any audio frequency and start listening or transmitting.
- However, if you get close to the edge, you will find that your transceiver does not have flat audio response, and so your PSK signal will be attenuated and poorly detected.
- If you see a station near the edge of the audio bandwidth that you want to work, first tweak the RF frequency to shift the audio signal to be closer to the center of the transceiver’s response—around 1.0-2.5 KHz.

<table>
<thead>
<tr>
<th>Band (meters)</th>
<th>Frequency (MHz, USB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>50.07, 50.29</td>
</tr>
<tr>
<td>10</td>
<td>28.120</td>
</tr>
<tr>
<td>12</td>
<td>24.920</td>
</tr>
<tr>
<td>15</td>
<td>21.080; 21.070</td>
</tr>
<tr>
<td>17</td>
<td>18.100</td>
</tr>
<tr>
<td>20</td>
<td>14.070</td>
</tr>
<tr>
<td>30</td>
<td>10.142</td>
</tr>
<tr>
<td>40</td>
<td>7.035; 7.08</td>
</tr>
<tr>
<td>80</td>
<td>3.582 LSB</td>
</tr>
</tbody>
</table>
Setting audio levels

- It’s all in the Window’s “mixer.”
- Double click on the icon on the system tray. The mixer will pop up, similar to what you see at the left.
- First, let’s get the input from the rig to the computer working, so you can monitor PSK-31:
 - Click on Options|Properties. Set the Recording button. Click on Ok.
 - Now select Line-In, and de-select Microphone.
 - Set the volume sliders to 50%
 - Adjust the rig volume for best waterfall.
Setting Audio Levels

- Now set the audio level from the sound card into your rig’s microphone:
- Again, back at the mixer’s main display…
- De-select everything but “Wave”. That’s your line out.
- Set the Wave volume to maximum.
- Now you can adjust the sound level by the Volume Control slider.
Setting the audio level

- Click “TX” button of your PSK-31 software, so that you are sending an idle PSK signal to the transceiver.
- Starting with the maximum sound level, observe the transmitter’s power output and back off the mixer’s audio level until the power level is at about 50%.
- You should observe an S-shaped curve like the one I measured at 1500 Hz.
- The proper audio level in this case would be about 50% of maximum.
Setting the audio level

- Avoid the temptation to crank up the audio level to get more power!
- You will only produce horrendous splatter, have very poor IMD, and be less copiable!
- Properly tuned, you will have a low IMD figure (-25 to –30 dB), and a clean spectrum with maximum copy—a signal you can be proud of.
One more clean signal hint:

- If you experience odd computer behavior, or a report of a poorly formed signal, RF is getting into your computer.
- Put a ferrite core toroid on all cables going to your computer (two or three turns):
 - Both audio cables
 - RS-232 cable
 - Keyboard cable
 - Mouse cable
 - Power cable
And a receive signal hint...

- Processing incoming audio is CPU intensive! If you see strong waterfall signals, but poor copy, terminate other programs that might be running on your computer and stealing CPU cycles!

- Copy quality depends on your choice of software, too.

W1SQLPSK (8.6% error)

Your sid looks OK to me. Doesn't seem to be overdriven.
I am running 50 watts to 3 el. beam up 67 feet.
So how are things in Carson City?
BTU Jack KB7NO de W8PSK

Digipan (1.2% error)

Your sig looks OK to me. Doesn't seem to be overdriven.
I am running 50 watts to 3 el. beam up 67 feet.
So how are things in Carson City?
BTU Jack KB7NO de W8PSK
Transmitted power in PSK-31

Don’t expect to transmit at the full (peak) power of your rig.

When in idle, the output power is the peak power times the RMS of a sine wave (0.707). If you are running 100 watts...
Operating in PSK—
Use of macros

Macros allow you to “pre-record” text that gets transmitted when you click a button.

Example: CQ macro as it appears in the macro editor:

So when you click on the CQ button, this gets transmitted as:

```
CQ CQ CQ DE KF6VSG pse K
```
Operating in PSK-31

QSO conventions

- No split operation—RX and TX on same frequency
- Abbreviations
 - Not so important as with CW. You are communicating at about 50 wpm, using a keyboard, and using macros, so “tnx fr call” might as well be “Thanks for the call.”
- Case
 - Use mixed case! PSK-31 supports upper and lower case and all punctuation, so you can type as if in a word processor.
Operating in PSK-31
QSO conventions continued

- Repeat important info.
 - PSK is *not error correcting*! Each character you type is immediately sent and received. A certain fraction of characters will be corrupted. Therefore, repeat vital info, like this:
 - Name here is George George. QTH is San Rafael CA San Rafael CA.

- RST reporting
 - You’ll have to guess at the signal strength based on the waterfall or spectrum analyzer display. Your rig’s S-meter won’t help you here. ‘R’ and ‘T’ are always 5 and 9.
Operating in PSK-31
QSO conventions continued

- IMD reporting
 - Most PSK-31 software reports the received signals Intermodulation Distortion.
 - More negative is better. A clean signal will have IMD < -25dB, and the best is around –29dB. When IMD is greater than –10dB, the sender is overdriving his rig (and generating splatter). Be sure to advise him to reduce his line out audio level!
 - Likewise, if you get a report of a poor IMD, you are not properly tuned up. Take a moment to reduce your audio level.
<table>
<thead>
<tr>
<th>Issue</th>
<th>Page</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 2001 QST</td>
<td>83</td>
<td>Revisiting "Clean Up Your PSK31 Signal" (Technical Correspondence)</td>
<td>Kruis, Richard J., K8CAV</td>
</tr>
<tr>
<td>Mar 2001 QST</td>
<td>10</td>
<td>DX4WIN/32 (Short Takes)</td>
<td>Ford, Steve, WB8IMY</td>
</tr>
<tr>
<td>Mar 2001 QST</td>
<td>41</td>
<td>The Considerate Operator's Guide to 3580 kHz (sidebar to The Warbler--A Simple PSK31 Transceiver for 80 Meters)</td>
<td>Benson, Dave, NN1G</td>
</tr>
<tr>
<td>Mar 2001 QST</td>
<td>37</td>
<td>The Warbler--A Simple PSK31 Transceiver for 80 Meters</td>
<td>Heron, George, N2APB</td>
</tr>
<tr>
<td>Mar 2001 QST</td>
<td>37</td>
<td>The Warbler--A Simple PSK31 Transceiver for 80 Meters</td>
<td>Benson, Dave, NN1G</td>
</tr>
<tr>
<td>Mar 2001 QST</td>
<td>37</td>
<td>The Warbler--A Simple PSK31 Transceiver for 80 Meters</td>
<td></td>
</tr>
<tr>
<td>Feb 2001 QST</td>
<td>88</td>
<td>Clean Up Your PSK31 Signals (Technical Correspondence)</td>
<td>Kruis, Richard J., K8CAV</td>
</tr>
<tr>
<td>Jan 2001 QST</td>
<td>50</td>
<td>The HF Digital "Tower of Babel"</td>
<td>Ford, Steve, WB8IMY</td>
</tr>
<tr>
<td>Oct 2000 QST</td>
<td>81</td>
<td>PSK31 on FM (Technical Correspondence)</td>
<td>Mason, Butch, W6KAG</td>
</tr>
<tr>
<td>Jun 2000 QST</td>
<td>31</td>
<td>A Panoramic Transceiving System for PSK31</td>
<td>Teller, Howard, KH6TY</td>
</tr>
<tr>
<td>May 2000 QST</td>
<td>45</td>
<td>"My PSK31 Doesn't Work!" (sidebar to PSK31 2000)</td>
<td>Ford, Steve, WB8IMY</td>
</tr>
</tbody>
</table>
Where to go for more info

<table>
<thead>
<tr>
<th>Issue</th>
<th>Page</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2000 QST</td>
<td>42</td>
<td>PSK31 2000</td>
<td>Ford, Steve, WB8IMY</td>
</tr>
<tr>
<td>Dec 1999 QST</td>
<td>35</td>
<td>A PSK31 Tuning Aid</td>
<td>Urbytes, Don, W8LGV</td>
</tr>
<tr>
<td>Nov 1999 QEX</td>
<td>59</td>
<td>PSK31: A New Radio-Teletype Mode (Jul/Aug 1999 QEX) (Replies) (Letters to the Editor)</td>
<td>Martinez, Peter, G3PLX</td>
</tr>
<tr>
<td>Nov 1999 QEX</td>
<td>59</td>
<td>PSK31: A New Radio-Teletype Mode (Jul/Aug 1999 QEX) (Comments) (Letters to the Editor)</td>
<td>Sabin, William E., W0IYH</td>
</tr>
<tr>
<td>Jul 1999 QEX</td>
<td>9</td>
<td>The convolutional Code (sidebar to: PSK31: A New Radio-Teletype Mode (reprint from RadCom))</td>
<td>Sumner, Dave, K1ZZ</td>
</tr>
<tr>
<td>Jul 1999 QEX</td>
<td>9</td>
<td>Is PSK31 Legal? (sidebar to: PSK31: A New Radio-Teletype Mode (reprint from RadCom))</td>
<td>Martinez, Peter, G3PLX</td>
</tr>
<tr>
<td>Jul 1999 QEX</td>
<td>3</td>
<td>PSK31: A New Radio-Teletype Mode (reprint from RadCom)</td>
<td>Martinez, Peter, G3PLX</td>
</tr>
<tr>
<td>Jul 1999 QEX</td>
<td>2</td>
<td>PSK31 (Empirically Speaking)</td>
<td>Smith, Doug, KF6DX</td>
</tr>
<tr>
<td>May 1999 QST</td>
<td>41</td>
<td>PSK31 - Has RTTY's Replacement Arrived</td>
<td>Ford, Steve, WB8IMY</td>
</tr>
</tbody>
</table>
Where to go for more info

Wireless Digital Communications: Design and Theory, Tom McDermott, N5EG

www.arrl.org (members only, search for PSK31)

www.ssiserver.com\info\psk31 (copy of this presentation as an Adobe PDF document)

www.psk31.com (“official home page”)

www.aintel.bi.ehu.es/psk31.html (“official home page”)

www.arrl.org/tis/info/HTML/psk31 (Steve Ford’s original QST article)

Email reflector: send email to **psk31-request@aintel.bi.ehu.es**. Put “subscribe” in the subject line.
Demonstration Time!
Conclusions

- PSK31 is just great if you…
- Want to try a new mode without a big investment
- Enjoy digital modes
- Enjoy ragchewing
- Enjoy DX
- Enjoy software and computers
- Enjoy QRP
- Enjoy kit building
- Have a poor antenna, low power or poor location
- Want to stay on the cutting edge
Acknowledgements
See you on 14.070 PSK-31!

You’ve been a great audience!

73’s from George, KF6VSG
Failure modes--Hardware

- Transceiver problems
 - volume level changed
- Audio cables/connector problems
 - Mono vs stereo audio cables
- Sound card failure/Driver failure
- COM port failure (RTS or DTR stuck either high or low)
- Signal conditioning circuit failure (stuck relay, jack failure)
- Antenna is too close to computer (hum and audio distortion)

And of course…
Failure modes--software

- Sound mixer
 - Improper audio levels
 - Audio sources disabled or muted

But, after you have it working, get ready for some fun…